

Available online at www.sciencedirect.com



Journal of Catalysis 237 (2006) 368-380

JOURNAL OF CATALYSIS

www.elsevier.com/locate/jcat

# Cu- and Pd-substituted nanoscale Fe-based perovskites for selective catalytic reduction of NO by propene

Runduo Zhang<sup>a</sup>, Adrian Villanueva<sup>a</sup>, Houshang Alamdari<sup>b</sup>, Serge Kaliaguine<sup>a,\*</sup>

<sup>a</sup> Department of Chemical Engineering, Laval University, Ste Foy (Quebec), PQ G1K 7P4, Canada
 <sup>b</sup> Nanox Inc., 4975 rue Rideau, Local 100, Ste Foy (Quebec), PQ G2E 5H5, Canada

Received 12 August 2005; revised 8 November 2005; accepted 10 November 2005

#### Abstract

A series of Fe-based perovskites with high specific surface area was prepared by a new method, reactive grinding, and characterized by N<sub>2</sub> adsorption, XRD, SEM, H<sub>2</sub>-TPR, TPD of O<sub>2</sub>, TPD of NO + O<sub>2</sub>, TPD of C<sub>3</sub>H<sub>6</sub>, and TPSR of NO + O<sub>2</sub> under C<sub>3</sub>H<sub>6</sub>/He flow. These materials were then subjected to activity tests in the selective catalytic reduction of NO by propene. The catalytic performance over LaFeO<sub>3</sub> is poor but can be improved significantly by incorporating Cu into its lattice, resulting in N<sub>2</sub> yields over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> of 81% at 450 °C and 97% at 700 °C with a reactant mixture containing 3000 ppm NO, 3000 ppm C<sub>3</sub>H<sub>6</sub>, and 1% O<sub>2</sub> in helium at a space velocity of 50,000 h<sup>-1</sup>. The enhanced NO reduction after Cu substitution is attributed to the easy formation of nitrate species, which have high reactivity toward C<sub>3</sub>H<sub>6</sub>. A mechanism was proposed with the formation of nitrate species as the first step and organo nitrogen compounds as important intermediates. Great catalytic performance at low temperature was also achieved over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> with a N<sub>2</sub> yield of 67% and C<sub>3</sub>H<sub>6</sub> conversion of 68% at 350 °C corresponding to the outstanding redox properties of this catalyst. O<sub>2</sub> can act as a promoter to oxidize NO into strongly adsorbed nitrate species, and also can accelerate the transformation of organo nitrogen compounds and isocyanate to get the desired products. In contrast, at higher concentrations O<sub>2</sub> has a detrimental effect, leading to consumption of the reducing agent by the complete oxidation of C<sub>3</sub>H<sub>6</sub>.

Keywords: SCR of NO; Propene; Reactive grinding; High surface area; Fe-based; Perovskite; TPR; TPD

# 1. Introduction

Perovskite oxides, promising alternatives to supported noble metals, have attracted much attention for exhaust gas depollution because of their low cost, thermal stability at rather high temperatures, great versatility, and excellent redox properties. Most previous studies on the use of perovskites for the purification of motor vehicles exhaust gas from NO<sub>x</sub> have involved the reaction between NO and CO [1–3]. Much less work has been reported on NO reduction using propene as a reducing agent in the presence of oxygen over perovskite-type oxides. Moreover, the limited data related to NO + C<sub>3</sub>H<sub>6</sub> + O<sub>2</sub> reaction over perovskites shows poor catalytic performance, with maximal NO conversion to N<sub>2</sub> of <25% [4,5]. Consequently, new efforts are needed to improve the catalytic activity toward NO reduction

by  $C_3H_6$  in the presence of  $O_2$  over perovskites, aiming to satisfy the requirements for their practical application.

It is well known that the catalytic characteristics of perovskites for various reactions and their redox properties depend primarily on the preparation procedure. The conventional method of perovskite preparation, the so-called "ceramic method," involves a calcination step with a temperature of at least 800 °C. As a result, large grain size and low specific surface area are usually obtained with a value of several  $m^2/g$  or even less [6]. Some other methods for preparing perovskites, including microemulsion [7], spray-drying [8], freeze-drying [9], citrate complexation [10], co-precipitation [11], and the sol-gel process [12], were developed to increase the specific surface area of perovskites by means of synthesis and calcination at relatively low temperatures (500-600 °C). The specific surface areas of perovskites generated by the foregoing methods can reach  $10-30 \text{ m}^2/\text{g}$ . Recently, a new method for perovskite preparation-reactive grinding-has been proposed

<sup>\*</sup> Corresponding author. Fax: +1 418 656 3810. E-mail address: kaliagui@gch.ulaval.ca (S. Kaliaguine).

<sup>0021-9517/\$ –</sup> see front matter  $\,$  © 2006 Published by Elsevier Inc. doi:10.1016/j.jcat.2005.11.019

by our group, generating a wide variety of perovskites at room temperature with extraordinarily high specific surface areas (on the order of  $100 \text{ m}^2/\text{g}$ ) when grinding additives are used [13–15].

The selection of B-site cations is of essential importance in designing perovskite catalysts as well as in modifying their catalytic properties, because the catalytic properties of perovskitetype oxides are practically determined by the nature of their B-site cations [16,17]. Fe-based perovskites were thought to be suitable catalysts for air pollution control because of their great performance in interactions between CO and NO [1], despite the scarcity of investigations into selective catalytic reduction of NO by  $C_3H_6$  in the presence of  $O_2$ . Moreover, B-site substitution of perovskites was also considered an effective way to improve their catalytic properties due to the generation of new lattice defects, mixed valence states, and nonstoichiometric oxygen [18]. Copper-containing catalysts are of special interest because they are active in the transformation of nitrogen oxides [19], with the low-coordination isolated Cu ions as active sites [20,21]. In addition, the activity of Pd-substituted lanthanum cuprates was found to be comparable to that of Pt-Rh/CeO<sub>2</sub>-Al<sub>2</sub>O<sub>3</sub> for NO reduction and higher for CO and C<sub>3</sub>H<sub>6</sub> oxidation [22]. A special self-regeneration character on Pd-containing perovskite was also described by Nishihata et al., who showed that Pd can move back and forth between the B-site in the perovskite and the metal oxide when exposed to fluctuations in the redox characteristics of the emission exhaust [23]. Cu and Pd ions, with valence states different from those of Fe ions in a perovskite lattice, thus may be interesting candidates for partial B-site substitution in LaFeO<sub>3</sub>.

In the present study, a parent LaFeO<sub>3</sub> and its corresponding Cu- or Pd-substituted perovskites (LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> and LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub>), synthesized by reactive grinding, were characterized by X-ray diffraction (XRD), temperature-programmed reduction by hydrogen (H<sub>2</sub>-TPR), temperature-programmed desorption (TPD) of O<sub>2</sub>, NO + O<sub>2</sub>, and C<sub>3</sub>H<sub>6</sub>, and temperatureprogrammed surface reduction (TPSR) of NO + O<sub>2</sub> under C<sub>3</sub>H<sub>6</sub>/He flow. The samples were also tested in a fixed-bed reactor for NO reduction with propene in the presence or absence of 1% O<sub>2</sub>. This research was carried out to identify the different physicochemical properties of LaFeO<sub>3</sub> before and after Cu or Pd substitution, as well as to illustrate the correlation between the modification of their structure and their catalytic behaviors. Another objective of this work was to propose a reaction mechanism for NO reduction over Fe-based perovskites.

# 2. Experimental

A series of Fe-based mixed oxides was synthesized by reactive grinding in a manner similar to that reported previously [13–15]. Desired amounts of La<sub>2</sub>O<sub>3</sub> (Alfa, 99.99%), Fe<sub>2</sub>O<sub>3</sub> (Baker & Adamson, 97.49%), CuO (Aldrich, 99%), or PdO (Aldrich, 99.98%) were fully mixed and milled inside a tempered-steel vial using three tempered-steel balls under an air atmosphere. Grinding was conducted in two steps of 8 h for synthesis and 10 h for refining, with ZnO as the grinding additive.

The specific surface area of the samples calcined at 500 °C for 5 h was determined using an automated gas sorption system (NOVA 2000; Quantachrome) through nitrogen adsorption equilibrium at -196 °C. Before measurements were done, samples of about 200 mg were outgassed at 300 °C under vacuum for 6 h to remove any remaining humidity. The chemical composition (Fe, Cu, Pd) of the catalysts was established by atomic absorption spectroscopy (AAS) using a Perkin-Elmer 1100B spectrometer after the samples were dissolved in a mixture of 25 ml of 10% HCl and 2 ml of concentrated HF at 60 °C for 24 h. The amount of La in the perovskites was measured using an inductively coupled plasma (ICP) spectrometer (Optima 4300DV; Perkin-Elmer) with the same pretreatment before analysis as used for AAS. The final products were characterized by XRD using a Siemens D5000 diffractometer with Cu-K $_{\alpha}$  radiation ( $\lambda = 1.5406$  Å) in a range  $20^{\circ} < 2\theta < 70^{\circ}$  with steps of  $0.05^{\circ}(2\theta)$  each for 2.4 s. Crystallite sizes were determined using Scherrer's equation after considering the instrumental broadening, whereas the crystal phases were identified via the JCPDS reference. The morphology of the mixed oxides after calcination at 500 °C for 5 h was recorded at 100,000× magnification by scanning electron microscopy (SEM), using a JEOL JSM 840A at 110 kV.

 $H_2$ -TPR and TPD of  $O_2$ , NO +  $O_2$ , and  $C_3H_6$  were conducted in a fixed-bed continuous-flow reactor. Before performing the H<sub>2</sub>-TPR study, the sample (about 50 mg) was heated to 500 °C and maintained at this temperature for 1 h under 10% O<sub>2</sub>. Before performing the TPD of O<sub>2</sub>, NO + O<sub>2</sub>, and  $C_3H_6$ -TPD, the sample was pretreated in 10%  $O_2$ , 3000 ppm  $NO + 1\% O_2$ , and 3000 ppm  $C_3H_6$ , respectively, balanced by He, at 500 °C for 1 h, followed by cooling to room temperature under the same atmosphere and purging with He for 40 min. The sample was heated again from room temperature to 800 °C at a rate of 5 °C/min with a 20 ml/min 5% H<sub>2</sub>/Ar flow in the TPR study, and the effluent gases were monitored on-line using a thermal conductivity detector (TCD). A cold trap was used to remove the water from effluent gas before it went through the TCD. The sample was flushed with 20 ml/min of He at a rising temperature up to 500 °C (800 °C for O<sub>2</sub>-TPD) at a rate of 10 °C/min in the TPD analysis. The O<sub>2</sub>, NO, N<sub>2</sub>O, and N<sub>2</sub> desorbed during O<sub>2</sub>-TPD and NO + O<sub>2</sub>-TPD experiments were simultaneously detected and recorded on-line by mass spectrometry (MS) with mass numbers of 32, 30, 44, and 14, respectively. Moreover, C<sub>3</sub>H<sub>6</sub>, CO, and CO<sub>2</sub> desorbed during C<sub>3</sub>H<sub>6</sub>-TPD experiments were monitored with the mass numbers of 41, 28 and 44, respectively.

TPSR of NO + O<sub>2</sub> under C<sub>3</sub>H<sub>6</sub>/He flow over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> was performed with the same sample pretreatment used for TPD of NO + O<sub>2</sub>, but the thermodesorption was performed in 1000 ppm of C<sub>3</sub>H<sub>6</sub>/He instead of He. The desorbed C<sub>3</sub>H<sub>6</sub>, NO, and O<sub>2</sub> together with generated CO<sub>2</sub>, N<sub>2</sub>, and H<sub>2</sub>O were monitored by MS with mass numbers of 41, 30, 32, 44, 14, and 18, respectively.

The selective catalytic reduction (SCR) of NO by  $C_3H_6$  was conducted in a tubular fixed bed reactor at atmospheric pressure. A gas mixture of 3000 ppm of NO, 3000 ppm of  $C_3H_6$ , with or without 1% O<sub>2</sub>, and the balance He, passed through a catalyst bed charge of about 100 mg with a flow rate of 60 ml/min, yielding a space velocity of 50,000  $h^{-1}$ . The reactor was placed in a tubular furnace controlled with a temperature programmer connected to a K-type thermocouple inserted inside the catalyst bed. The temperature was modified from 200 to 700 °C in 50 °C steps. The effluent gases (NO, N<sub>2</sub>O, NO<sub>2</sub>, and C<sub>3</sub>H<sub>6</sub>) were analyzed using a FTIR gas cell (FTLA 2000; ABB Inc.). N2 and O2 were monitored by gas chromatography (GC) (Hewlett Packard 5890) equipped with TCD and separated using columns of molecular sieve 13X combined with a silicone OV-101 column. Nitrogen oxides were also analyzed using a chemiluminescence  $NO/NO_2/NO_x$  analyzer (model 200AH; Advanced Pollution Instrumentation). Organo nitrogen compounds, mentioned in the literature as intermediates of NO reduction by hydrocarbons [24-26], can be detected by comparing the NO<sub>2</sub> values from the NO<sub>x</sub> analyzer and from the IR spectrometer. The higher NO<sub>2</sub> value from the  $NO_x$  analyzer was ascribed to the organo nitrogen compounds observed as an NO<sub>2</sub> signal after the NO<sub>2</sub>/NO converter of this analyzer. These organo nitrogen compounds were further identified by GC-MS (CP 3800-Saturn 2200; Varian) and confirmed to be composed mainly of  $C_3H_7NO_2$ .

# 3. Results

## 3.1. Catalyst physicochemical characterization

The chemical compositions of the prepared solids established by AAS and ICP were close to the nominal values (Table 1). The BET specific surface areas and pore diameters of the materials, synthesized by reactive grinding after calcination at 500 °C for 5 h, were determined by N<sub>2</sub> adsorption and are also reported in Table 1. The results show a surface area about 30 m<sup>2</sup>/g for the LaFeO<sub>3</sub> catalyst even after calcination at 500 °C. This value is superior to values from similar perovskites synthesized by ceramic methods [2,27]. The surface area of lanthanum ferrite is further enhanced upon Cu or Pd substitution, reaching a value >40 m<sup>2</sup>/g.

A nearly pure orthorhombic LaFeO<sub>3</sub> perovskite-type structure (JCPDS card 74-2203) on all prepared Fe-based catalysts was confirmed by XRD patterns in Fig. 1, apart from a small amount of  $\alpha$ -Fe<sub>2</sub>O<sub>3</sub> (JCPDS card 86–0550). No diffraction lines corresponding to PdO (JCPDS card 85-0713) or CuO (JCPDS card 80-1917) are seen, suggesting that these metals are incorporated into the LaFeO<sub>3</sub> structure. However, the formation of tiny PdO or CuO particles, which could not be detected by XRD, cannot be excluded. The signal peak at  $2\theta \approx 32^{\circ}$  in XRD patterns implies a highly symmetric lattice



Properties of LaFe<sub>1-x</sub> $M_xO_3$  (M = Cu or Pd) mixed oxides after calcination at 500 °C for 5 h

| Sample                                                 | Chemical composition                        | Specific surface area (m <sup>2</sup> /g) | Pore volume (ml/g) | Pore diameter (nm) | Crystallite size (nm) |
|--------------------------------------------------------|---------------------------------------------|-------------------------------------------|--------------------|--------------------|-----------------------|
| LaFeO3                                                 | $La_{0.99}Fe_{1.0}O_{3 \pm \delta}$         | 30.5                                      | 0.13               | 16.2               | 18.7                  |
| LaFe <sub>0.8</sub> Cu <sub>0.2</sub> O <sub>3</sub>   | $La_{0.97}Fe_{0.80}Cu_{0.20}O_{3\pm\delta}$ | 41.6                                      | 0.16               | 14.6               | 16.8                  |
| LaFe <sub>0.97</sub> Pd <sub>0.03</sub> O <sub>3</sub> | $La_{0.96}Fe_{0.97}Pd_{0.03}O_{3\pm\delta}$ | 48.1                                      | 0.15               | 11.8               | 18.9                  |

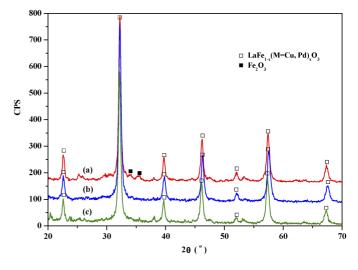



Fig. 1. XRD patterns of (a) LaFeO<sub>3</sub>, (b) LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub>, (c) LaFe<sub>0.97</sub> Pd<sub>0.03</sub>O<sub>3</sub> mixed oxides.

inside the perovskites generated by reactive grinding [18]. Furthermore, the crystallite sizes were calculated using Scherrer's equation, as represented in Table 1 with values <20 nm. Taking into account the fact that both the pore diameters determined by N<sub>2</sub> adsorption and the crystallite sizes determined from XRD patterns are around 10–20 nm, we thus can infer that the porous structure of the present perovskites was formed via clustering of their primary particles, in accordance with earlier findings [28]. A sponge-like phase was observed by SEM (not shown) for all solids with a cluster of 50–200 nm, thought to be composed of individual nanoscale primary particles resulting in a somewhat porous microstructure. The dispersion of perovskite clusters seems to be improved by Cu or Pd substitution, yielding a higher specific surface area.

#### 3.2. H<sub>2</sub>-TPR

The reducibility of prepared samples was investigated by H<sub>2</sub>-TPR experiments, as illustrated in Fig. 2. For LaFeO<sub>3</sub>, three reduction peaks are detectable, suggesting a multiple-step reduction. The first small peak centered at 215 °C is followed by a second broad peak and a third more intense peak, overlapping substantially, with maxima at 440 and 573 °C, respectively. With 20% Cu substitution, the TPR profile of LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> exhibits two reduction signals, a sharp one centered at 241 °C and another centered at 460 °C with shoulders at 360 and 600 °C. As Fe is partially substituted by Pd, a more complicated reduction occurs, as shown in Fig. 2, with maxima at 78, 219, 328, and 465 °C, respectively.

Because La<sup>3+</sup> is nonreducible under the conditions of H<sub>2</sub>-Cu-substituted samples, indicating that the Cu<sup>+</sup> ions produced TPR, the observed H<sub>2</sub> consumption should be ascribed to the at this temperature interact with the iron ion, making the latter reduction of  $Fe^{n+}$  ions in the case of LaFeO<sub>3</sub>. A small amount more easily reducible. A similar reduction behavior was found of highly reducible Fe<sup>4+</sup> has been reported in LaFeO<sub>3</sub> [29–31], over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> perovskite. An additional reduction peak and its reduction to Fe<sup>3+</sup> occurred at T < 300 °C during H<sub>2</sub>was found in the LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> TPR trace at 78 °C, which, according to the literature [34], corresponds to the reduction of TPR experiments [30]. The small amount of H<sub>2</sub> consumed at 215 °C in the H<sub>2</sub>-TPR profile of LaFeO<sub>3</sub> can be attributed to  $Pd^{2+}$  to  $Pd^{0}$ . This H<sub>2</sub> consumption occurring at quite low temthe reduction of  $Fe^{4+}$  to  $Fe^{3+}$ , followed by a successive reperature reveals the excellent redox properties of Pd-substituted duction of Fe<sup>3+</sup> centered at 440 and 573 °C, respectively. The perovskite, possibly leading to good catalytic performance especially at low temperatures.  $Fe^{4+} \rightarrow Fe^{3+}$  reduction was obquantitative analysis of these two peaks correlated well with the served again at 219 °C along with a downward shift of Fe<sup>3+</sup>  $\rightarrow$  $Fe^{2+}$  reduction in the H<sub>2</sub>-TPR profile of LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> with respect to that of LaFeO<sub>3</sub>.

 $H_2$  consumption in the reduction of  $Fe^{3+}$  to  $Fe^{2+}$ . They were therefore ascribed to  $Fe^{3+} \rightarrow Fe^{2+}$  reduction occurring over the surface and in the bulk of LaFeO<sub>3</sub>, respectively. Subsequently, the minor reduction peak above 700 °C was assigned to the partial reduction of Fe<sup>2+</sup> to metallic iron. The formula of parent Fe-based perovskite was thus determined as  $La_{0.99}Fe_{0.055}^{4+}$  $Fe_{0.945}^{3+}O_{3.013}$  based on above ascription of  $Fe^{n+}$  reduction and elemental analysis (see Table 1), showing 5.5%  $Fe^{4+}$  and little overstoichiometric oxygen present in LaFeO<sub>3</sub>. The additional peak at 241 °C appearing in the case of Cu-substituted perovskite can be attributed to the reduction of lattice  $Cu^{2+}$  to Cu<sup>+</sup>, whereas the shoulder at 550 °C may be possibly ascribed to the complete reduction of  $Cu^+$  to  $Cu^0$ . These values are very similar to those observed in H<sub>2</sub>-TPR of Cu/MCM-41 [21], LaCo<sub>1-x</sub>Cu<sub>x</sub>O<sub>3</sub>, and LaMn<sub>1-x</sub>Cu<sub>x</sub>O<sub>3</sub> (x = 0.1, 0.2) [32,33]. The Fe<sup>4+</sup> reduction peak is likely completely included in the rising part of the  $Cu^{2+} \rightarrow Cu^{+}$  reduction peak, whereas the  $Fe^{3+} \rightarrow Fe^{2+}$  reduction peak is shifted to lower temperatures in

#### 3.3. *O*<sub>2</sub>-*TPD*

TPD of O<sub>2</sub> over Fe-based perovskites was investigated; the results are shown in Fig. 3. The amount of O<sub>2</sub> released from perovskites was calculated after deconvolution of the O<sub>2</sub> desorption curve and are listed in Table 2. Only a small amount of O<sub>2</sub> desorbed from LaFeO<sub>3</sub> at T < 700 °C; this is designated as  $\alpha$ -O<sub>2</sub> and ascribed to oxygen species weakly bound to the surface of the perovskite [14]. More O<sub>2</sub> desorption observed at T > 700 °C is referred to as  $\beta$ -O<sub>2</sub>, which is liberated from the lattice [14]. In the case of LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub>, a curve similar to that of LaFeO<sub>3</sub> was obtained apart from an obvious enhancement of  $\beta$ -O<sub>2</sub> desorption peak at 250–700 °C, along with a sharp  $\beta$ -O<sub>2</sub>

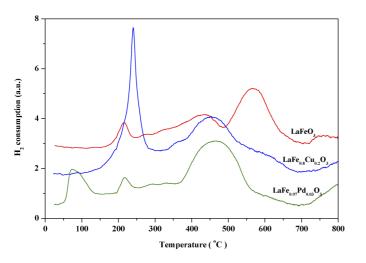



Fig. 2. H<sub>2</sub>-TPR profiles of Fe-based perovskites.




Fig. 3. TPD of O2 profiles over Fe-based perovskites.

| Table 2                                                                                            |  |
|----------------------------------------------------------------------------------------------------|--|
| Amount of O <sub>2</sub> desorbed from Fe-based perovskites during O <sub>2</sub> -TPD experiments |  |

| Sample                                                 | Amount of oxygen desorbe                                    | d <sup>a</sup>                                                | Number of monolayers desorbed <sup>b</sup> |                  |  |
|--------------------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|------------------|--|
|                                                        | $\alpha$ -O <sub>2</sub> (µmol g <sup>-1</sup> )<br><700 °C | $\beta$ -O <sub>2</sub> (µmol g <sup>-1</sup> )<br>700–800 °C | α-O <sub>2</sub>                           | β-O <sub>2</sub> |  |
| LaFeO3                                                 | 38.2                                                        | 76.2                                                          | 0.31                                       | 0.63             |  |
| LaFe <sub>0.8</sub> Cu <sub>0.2</sub> O <sub>3</sub>   | 196.5                                                       | 202.2                                                         | 1.18                                       | 1.22             |  |
| LaFe <sub>0.97</sub> Pd <sub>0.03</sub> O <sub>3</sub> | 62.8                                                        | 173.1                                                         | 0.33                                       | 0.90             |  |

<sup>a</sup> Calculated by deconvolution of the O<sub>2</sub> desorption curves.

<sup>b</sup> Calculated with 4  $\mu$ mol m<sup>-2</sup> of oxygen per monolayer [14].

desorption maximum at 796 °C, were observed in the O<sub>2</sub>-TPD profile over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub>. This significant enhancement of adsorbed  $\alpha$ -O<sub>2</sub> desorption is likely related to surface oxygen vacancies generated on Cu substitution.

#### 3.4. $NO + O_2$ -TPD

Figs. 4a–d show the desorption signals of NO (m/e = 30), N<sub>2</sub>O (m/e = 44), N<sub>2</sub> (m/e = 14), and O<sub>2</sub> (m/e = 32) during the NO + O<sub>2</sub>-TPD process after adsorption at room temperature under 3000 ppm NO and 1% O<sub>2</sub> for the three Fe-containing perovskites. Deconvolution of the NO + O<sub>2</sub>-TPD profiles was performed using Lorentzian peak shapes in a computer peakfitting routine. The amounts of NO, N<sub>2</sub>O, N<sub>2</sub>, and O<sub>2</sub> desorbed from perovskites were calculated based on these deconvolutions and are reported in Table 3. Three overlapping NO desorption peaks were observed for LaFeO<sub>3</sub> with maxima at 176, 272, and 360 °C, respectively. A similar NO desorption curve was observed over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub>, except that its low-temperature peak was shifted upward and the third peak centered at 364 °C was slightly enhanced. A significant increase in the intensity of the third peak was found after Cu substitution. The N<sub>2</sub>O and N<sub>2</sub> desorption (Figs. 4b and c) were detectable over the same range, 80-320 °C, followed by O<sub>2</sub> desorption at T > 330 °C over Fe-based perovskites (Fig. 4d).

## 3.5. C<sub>3</sub>H<sub>6</sub>-TPD

The MS signals of  $C_3H_6$  (m/e = 41), CO (m/e = 28), and  $CO_2$  (m/e = 44) during the TPD of  $C_3H_6$  experiments over Fe-based perovskites are recorded in Figs. 5a-c. A quantitative analysis of the various gases desorbed from perovskites is presented in Table 4. One sharp peak for C<sub>3</sub>H<sub>6</sub> desorption at 60 °C, and only minor CO or CO<sub>2</sub> desorption, are observed in the C<sub>3</sub>H<sub>6</sub>-TPD profile for LaFeO<sub>3</sub>. C<sub>3</sub>H<sub>6</sub> desorption is obviously decreased over the Cu-substituted perovskite, in combination with a significant  $CO_2$  desorption with a maximum at 435 °C. This result implies that C<sub>3</sub>H<sub>6</sub> transformation via complete oxidation into adsorbed CO<sub>2</sub> was promoted by Cu substitution. Taking into account the result that  $\alpha$ -oxygen of Fe-based perovskites can be significantly enhanced by Cu substitution (see Fig. 3), it was thus thought that  $\alpha$ -oxygen adsorbed on oxygen vacancies plays an important role in the transformation of C<sub>3</sub>H<sub>6</sub> into CO<sub>2</sub>. A similar diminution of C<sub>3</sub>H<sub>6</sub> desorption was

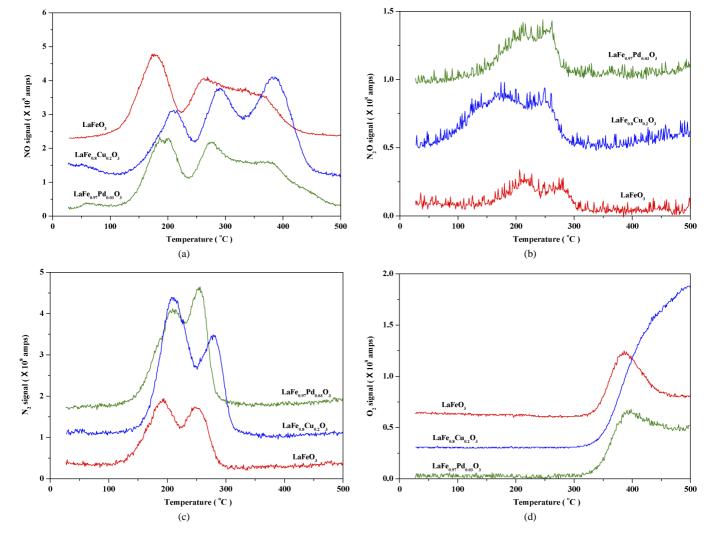



Fig. 4. TPD of NO +  $O_2$  profiles over Fe-based perovskites. MS signal of (a) NO, (b)  $N_2O$ , (c)  $N_2$ , (d)  $O_2$ .

| Sample                                                 | NO <sup>a</sup> ( $\mu$ mol g <sup>-1</sup> ) |        |        |       | O <sub>2</sub>     | Third      | N <sub>2</sub> O | $N_2^{c}  (\mu mol  g^{-1})$ |        |
|--------------------------------------------------------|-----------------------------------------------|--------|--------|-------|--------------------|------------|------------------|------------------------------|--------|
|                                                        | 1                                             | 2      | 3      | Total | $(\mu mol g^{-1})$ | $NO/O_2^b$ | (amp s)          | 1                            | 2      |
|                                                        | 176 °C                                        | 272 °C | 360 °C |       |                    |            |                  | 193 °C                       | 250 °C |
| LaFeO3                                                 | 19.1                                          | 19.5   | 10.6   | 49.2  | 11.3               | 0.94       | 2.1              | 2.0                          | 1.1    |
|                                                        | 207 °C                                        | 293 °C | 382 °C |       |                    |            |                  | 211 °C                       | 279 °C |
| LaFe <sub>0.8</sub> Cu <sub>0.2</sub> O <sub>3</sub>   | 15.3                                          | 20.3   | 27.9   | 63.5  | 28.2               | 0.99       | 4.5              | 3.9                          | 1.8    |
|                                                        | 191 °C                                        | 279 °C | 364 °C |       |                    |            |                  | 209 °C                       | 254 °C |
| LaFe <sub>0.97</sub> Pd <sub>0.03</sub> O <sub>3</sub> | 15.5                                          | 19.8   | 16.3   | 51.6  | 15.5               | 1.05       | 2.8              | 2.8                          | 1.8    |

| Table 3                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Amounts of NO, N <sub>2</sub> O, N <sub>2</sub> and O <sub>2</sub> desorbed from Fe-based perovskites during NO + O <sub>2</sub> -TPD experiments |

<sup>a</sup> Calculated by deconvolution of NO desorption curves.

<sup>b</sup> The molar ratio between amount in the third NO desorption peak (T > 300 °C) and amount of O<sub>2</sub> desorbed over the same temperature range.

<sup>c</sup> Calculated by deconvolution of  $N_2$  desorption curves.

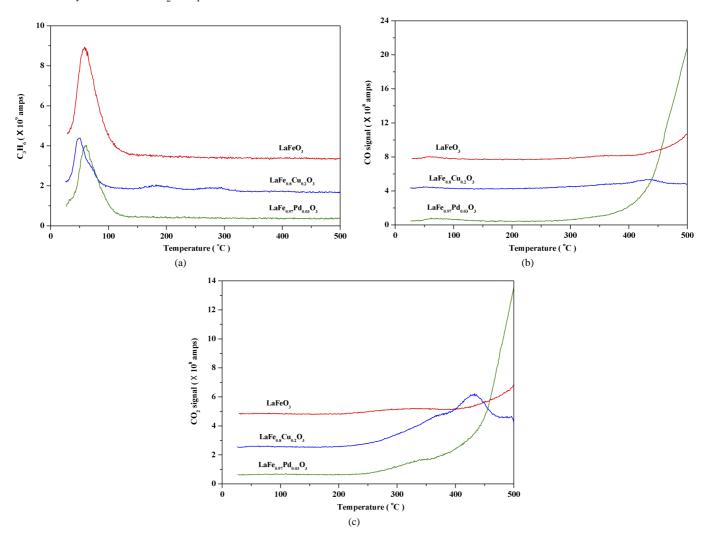



Fig. 5. TPD of  $C_3H_6$  profiles over Fe-based perovskites. MS signal of (a)  $C_3H_6$ , (b) CO, (c) CO<sub>2</sub>.

also found over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub>. However, drastic increases in both CO and CO<sub>2</sub> desorption were achieved over this catalyst at T > 200 °C, suggesting that LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> is catalyzing not only the complete oxidation of C<sub>3</sub>H<sub>6</sub> into CO<sub>2</sub>, but also the partial oxidation of C<sub>3</sub>H<sub>6</sub> into CO. This is likely related to the high reducibility of Pd<sup>2+</sup> in lattice, as illustrated by the H<sub>2</sub>-TPR profiles (Fig. 2).

# 3.6. TPSR of NO + $O_2$ under $C_3H_6/He$ flow

The TPSR of adsorbed NO + O<sub>2</sub> in C<sub>3</sub>H<sub>6</sub>/He flow over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> is presented in Fig. 6. A large amount of oxygen desorbs from the perovskite surface under an atmosphere of 1000 ppm C<sub>3</sub>H<sub>6</sub>/He. This signal rapidly declines at 240–280 °C simultaneously with the consumption of C<sub>3</sub>H<sub>6</sub>. At T < 300 °C,

Total

3.1

5.7

4.6

| Table 4                                                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Amounts of C <sub>3</sub> H <sub>6</sub> , CO, and CO <sub>2</sub> desorbed from Fe-based perovskites during C <sub>3</sub> H <sub>6</sub> -TPD experiments |

| Sample                                                 | C <sub>3</sub> H <sub>6</sub> |                           | СО               |                           | CO <sub>2</sub>  | CO <sub>2</sub>           |  |
|--------------------------------------------------------|-------------------------------|---------------------------|------------------|---------------------------|------------------|---------------------------|--|
|                                                        | T <sub>max</sub><br>(°C)      | Amount $(\mu mol g^{-1})$ | <i>T</i><br>(°C) | Amount $(\mu mol g^{-1})$ | <i>Т</i><br>(°С) | Amount $(\mu mol g^{-1})$ |  |
| LaFeO3                                                 | 60                            | 3.5                       | >250             | 57.2                      | >200             | 72.9                      |  |
| LaFe <sub>0.8</sub> Cu <sub>0.2</sub> O <sub>3</sub>   | 49                            | 2.1                       | >250             | 34.0                      | >200             | 239.4                     |  |
| LaFe <sub>0.97</sub> Pd <sub>0.03</sub> O <sub>3</sub> | 60                            | 2.3                       | >250             | 174.1                     | >200             | 342.7                     |  |

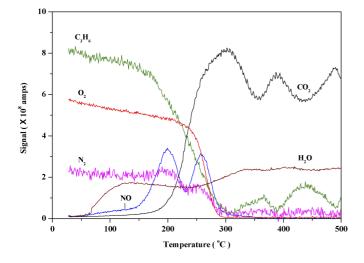



Fig. 6. MS signals during TPSR of NO +  $O_2$  under  $C_3H_6/He$  flow over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> perovskite. Conditions: flow rate = 20 ml/min, 3000 ppm NO, 1% O<sub>2</sub>, 1000 ppm C<sub>3</sub>H<sub>6</sub>.

the NO desorption features are similar to those shown in Fig. 4a for the thermodesorption of NO; however, the third NO desorption peak at T > 300 °C seen in Fig. 4a is not present in Fig. 6. Some N<sub>2</sub> desorption is observed simultaneously with the NO desorption at T < 300 °C. The appearance of CO<sub>2</sub> coincides with the disappearance of C<sub>3</sub>H<sub>6</sub>.

#### 3.7. Activity tests

The temperature dependence of NO conversion to N<sub>2</sub> over the three Fe-based perovskites is shown in Fig. 7a. Over unsubstituted LaFeO<sub>3</sub>, the conversion to N<sub>2</sub> begins to be significant at 350 °C and increases progressively with increasing temperature, reaching 62% at 700 °C. A considerably enhanced conversion to N<sub>2</sub> was observed over lanthanum ferrite after Cu substitution, resulting in initiation at 350 °C and reaching values of 81% at 450 °C and 97% at 700 °C. A remarkable conversion to N<sub>2</sub>, occurring at 250 °C and reaching as high as 67% at 350 °C, was achieved over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub>. Organo nitrogen compounds were detected in the effluent at high temperature, with a maximum yield of 36% over LaFeO3, 14% over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub>, and 42% over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub>, as depicted in Fig. 7b. These organo nitrogen compounds are widely mentioned in the literature as intermediates during SCR of NO by hydrocarbons [24–26]. The detection of these organo nitrogen compounds is simultaneous with a decrease in the conversion to N<sub>2</sub>, as can be seen by comparing Figs. 7a and b. The conversion of C<sub>3</sub>H<sub>6</sub>, shown in Fig. 7c, increases progressively up

to 80% at 200–500 °C. The conversion level at T < 500 °C was significantly improved after Cu and Pd substitution, resulting in C<sub>3</sub>H<sub>6</sub> conversion of 63 and 68%, respectively, at 300 °C. Some CO formation was observed at high temperature, increasing in the following order: LaFeO<sub>3</sub> < LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> < LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> (Fig. 7d).

Fig. 8 presents the catalytic performance of LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> in NO reduction by C<sub>3</sub>H<sub>6</sub> in absence of oxygen, showing a maximum N<sub>2</sub> yield (70%) at 350 °C followed by a decline (54%) at 450 °C and a final development (95%) at 700 °C. C<sub>3</sub>H<sub>6</sub> conversion increased monotonically at rising temperature, reaching a plateau of approximately 45% at 500–600 °C and then rising continuously to almost 96% at 700 °C. Organo nitrogen compounds were found during this reaction, with a maximum of 30% at 450 °C over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub>. Accompanied by the decreased yield of organo nitrogen compounds, CO formation became obvious at T > 450 °C and then reached about 30% at higher temperatures.

Yields of N<sub>2</sub> and organo nitrogen compounds and  $C_3H_6$  conversions as functions of O<sub>2</sub> concentration over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> at 400 °C are shown in Fig. 9 to clarify the role of gaseous O<sub>2</sub> during SCR of NO. With an increase in O<sub>2</sub> concentration, the maximum N<sub>2</sub> yield was about 76% at 3000 ppm O<sub>2</sub>. Other authors have reported similar results for the effect of O<sub>2</sub> in SCR of NO by C<sub>3</sub>H<sub>6</sub> for La<sub>0.8</sub>Sr<sub>0.2</sub>Mn<sub>0.5</sub>Cu<sub>0.5</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub> at 375 °C [35] and Cu/ZSM-5 at 300 °C [36]. The yield of organo nitrogen compounds decreases rapidly, from 23% in absence of O<sub>2</sub> to 1% at 5000 ppm O<sub>2</sub>. In contrast, increasing O<sub>2</sub> concentration

#### 4. Discussion

#### 4.1. O<sub>2</sub>-TPD

The mobility of O<sub>2</sub> over Fe-based perovskites was investigated via O<sub>2</sub>-TPD experiments; the results are given in Fig. 3 and Table 2. The lowest  $\alpha$ - and  $\beta$ -O<sub>2</sub> desorption was obtained over LaFeO<sub>3</sub> among the three Fe-based perovskites, implying poor molecular O<sub>2</sub> coverage and lattice oxygen reducibility of lanthanum ferrite, in accordance with previous reports [37, 38]. The substitution of 20% Fe<sup>3+</sup> by Cu<sup>2+</sup> leads to a positive charge deficiency, which is compensated for by oxygen vacancies, resulting in significant enhancement of  $\alpha$ -O<sub>2</sub>. The  $\beta$ -oxygen of the Cu-substituted sample was also enhanced due to the improvement of its reducibility via Cu incorporation, as already confirmed by H<sub>2</sub>-TPR experiments (Fig. 2). A similar effect was also found in the substitution of Fe<sup>3+</sup> by Pd<sup>2+</sup>. Note

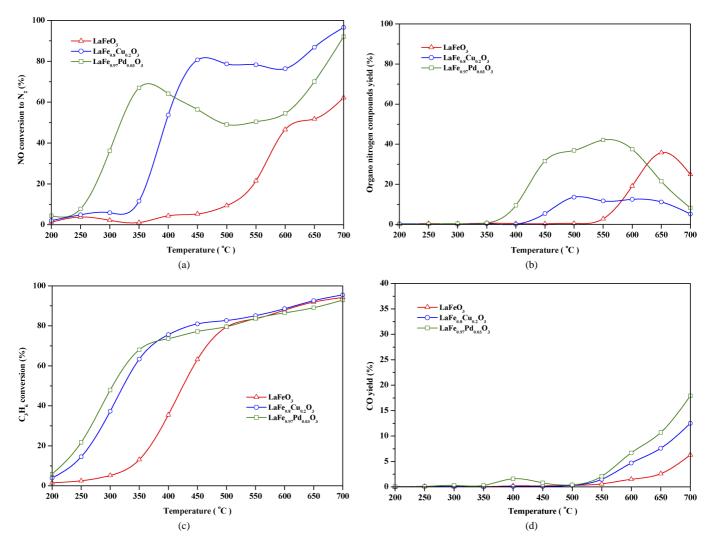



Fig. 7. (a) NO conversion to N<sub>2</sub>, (b) yield of organo nitrogen compounds, (c)  $C_3H_6$  conversion, (d) CO yield in  $C_3H_6 + NO + O_2$  reactions over Fe-based perovskites. Conditions: GHSV = 50,000 h<sup>-1</sup>, 3000 ppm C<sub>3</sub>H<sub>6</sub>, 3000 ppm NO, 1% O<sub>2</sub>.

that  $\beta$ -O<sub>2</sub> can be significantly enhanced with only 3% substitution of B-site ions by Pd<sup>2+</sup>. This likely corresponds to the highly reducible Pd<sup>2+</sup> promoting the mobility of lattice O<sub>2</sub>, as observed in H<sub>2</sub>-TPR of LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> (Fig. 2). Based on our earlier description [14], the following process was assumed to occur during calcination of LaFeO<sub>3</sub> perovskite.

(1) Transient generation of anion vacancy during calcination of fresh sample,

OH OH O<sup>-</sup>  

$$|$$
  $|$   $|$   $|$   
 $\operatorname{Fe}^{n+} + \operatorname{Fe}^{n+} \xrightarrow{-\operatorname{H}_2O} \operatorname{Fe}_{(n-1)+\Box} + \operatorname{Fe}^{n+},$  (1)  
(anion vacancy)  
where  $n = 3 \text{ or } 4.$ 

(2) Instantaneous formation of  $\alpha$ -O<sub>2</sub> by adsorbing O<sub>2</sub> at anion vacancy,

$$Fe^{(n-1)+} \Box + O_2 \rightarrow Fe^{n+} .$$
(2)

The following two reactions are proposed for the  $\alpha$ -O<sub>2</sub> desorption process:

$$\begin{array}{c} \mathbf{O}_2^- \\ | \\ \mathbf{F}\mathbf{e}^{n+} \rightarrow \mathbf{F}\mathbf{e}^{(n-1)+}\Box + \mathbf{O}_2. \end{array}$$

$$(4)$$

In Eqs. (1)–(4), iron ions are indicated here as examples. In the substituted samples, pairs of one  $Fe^{n+}$  and one  $Cu^{2+}$  or  $Pd^{2+}$  are also present. Reactions (1) and (3) may therefore happen on these new ion pairs. Reactions (3) and (4) also occur in the coordination sphere of copper or palladium ions.

The  $\beta$ -oxygen desorbed above 700 °C, as previously reported for similar compounds [38], is defined as the oxygen liberated from the lattice, leaving oxygen bulk vacancies and reduced cations. The amount of  $\beta$ -oxygen desorbed is thus generally considered a measure of lattice oxygen mobility. The Fe<sup>*n*+</sup>  $\rightarrow$  Fe<sup>(*n*-1)+</sup> reduction (*n* = 3 or 4) and anion vacancy generation process after the desorption of lattice oxygen from

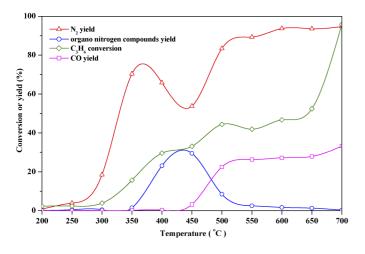



Fig. 8. Catalytic performance in  $C_3H_6 + NO$  reaction over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> perovskite. Conditions: GHSV = 50,000 h<sup>-1</sup>, 3000 ppm C<sub>3</sub>H<sub>6</sub>, 3000 ppm NO.

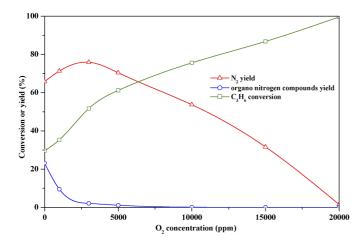



Fig. 9. Effect of O<sub>2</sub> feed concentration on NO reduction by  $C_3H_6$  over  $LaFe_{0.8}Cu_{0.2}O_3$ . Conditions: GHSV = 50,000 h<sup>-1</sup>,  $T = 400^{\circ}C$ , 3000 ppm  $C_3H_6$ , 3000 ppm NO.

the surface, observed in  $H_2$ -TPR profiles (Fig. 2), was believed to involve the following step:

$$Fe^{n+} Fe^{n+} \rightarrow Fe^{(n-1)+} Fe^{(n-1)+} + \frac{1}{2}O_2.$$
(5)

Thereafter,  $\beta$ -oxygen desorption involves the diffusion of oxygen from the bulk to the surface,

$$Fe^{(n-1)+} \Box Fe^{(n-1)+} + Fe^{n+} Fe^{n+} Fe^{n+}$$

$$(bulk) = Fe^{n+} Fe^{n+} + Fe^{(n-1)+} \Box Fe^{(n-1)+} Fe^{($$

In the case of Cu- and Pd-substituted samples, the desorption of  $\beta$ -oxygen can also be realized via the following step:

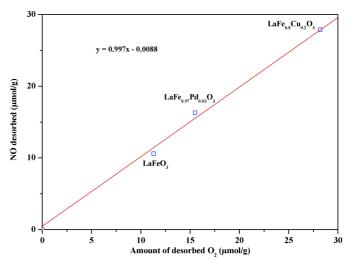



Fig. 10. Relationship between  $O_2$  and the corresponding NO desorption at T > 300 °C during NO +  $O_2$ -TPD.

$$Fe^{n+}\underset{(surface)}{\overset{O^{2-}}{\longrightarrow}} M^{n+} \rightarrow Fe^{(n-1)+} \square M^{(n-1)+} + \frac{1}{2}O_2,$$
  
M = Cu or Pd. (7)

In LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub>, the amount of  $\beta$ -oxygen desorbed at 700–800 °C was 202 µmol/g, which is half the theoretical oxygen corresponding to complete copper reduction to the metal (409 µmol/g). It seems thus that the  $\beta$ -oxygen thermodesorption corresponds to the reduction of Cu<sup>2+</sup> to Cu<sup>+</sup> as suggested by reaction (7).

## 4.2. $NO + O_2$ -TPD

Various bands assigned to mononitrosyl, dinitrosyl, and nitrite or nitrate species were found in IR spectroscopy studies of NO adsorbed over LaFeO<sub>3</sub> perovskites [39]. The formation of nitrosyl, nitrite, or nitrate species during NO-TPD over Cu/MCM-41 was also observed in our previous work [21]. In the present work, the species adsorbed during co-adsorption of NO and O<sub>2</sub> over Fe-based perovskites were investigated by monitoring the MS signals of NO, N<sub>2</sub>O, N<sub>2</sub>, and O<sub>2</sub> in the effluents of NO + O<sub>2</sub> experiments (Figs. 4a–d). The amounts of the various species desorbed were quantified and listed in Table 3.

Although the NO desorption traces (m/e = 30) for Fe-based perovskites, reported in Fig. 4a, show essentially three overlapping peaks, the oxygen traces (Fig. 4d; m/e = 32) show that oxygen desorbs simultaneously with only the high-temperature NO peak in amounts that are essentially enhanced after Pd and Cu substitution (see Table 3). It is remarkable that the hightemperature NO peaks and O<sub>2</sub> peaks are essentially located at the same temperature and that even the shapes of the peaks look alike. Coq et al. [40] reported that the desorption of NO<sub>3</sub><sup>-</sup> species would appear as a NO desorption peak at high temperature (T > 300 °C) with parallel O<sub>2</sub> desorption. Furthermore, the moles of NO desorbed at the high-temperature peak are plotted against those of O<sub>2</sub> (Table 3) in Fig. 10. Given the imprecise nature of the curve fitting of NO traces, the data are reasonably R. Zhang et al. / Journal of Catalysis 237 (2006) 368-380

well fitted with a line of slope 1, indicating that the NO/O<sub>2</sub> ratio is essentially 1 over these catalysts. This strongly suggests that high-temperature NO desorption is associated with the desorption of an oxidized nitrogen oxide species with a general formula of NO<sub>3</sub><sup>-</sup>. The oxidation of NO was likely realized by  $\alpha$ -oxygen as O<sub>2</sub><sup>-</sup> ion radicals formed during calcination and O<sub>2</sub> adsorption,

$$\begin{array}{ccc} & & O \\ & & N \\ O_2^- & & O \\ & & I \\ Fe^{n+} + NO \rightarrow Fe^{n+}. \end{array}$$
(8)

Compared with Fig. 3, no  $\alpha$ -oxygen desorbing at T < 300 °C is observed in Fig. 4d, suggesting that reaction (8) involving  $\alpha$ -oxygen occurs during the NO + O<sub>2</sub>-TPD process.

The desorption of nitrate species leads to the formation of NO and  $O_2$  with a molar ratio NO/ $O_2$  equal to 1,

Besides the NO desorption related to nitrate species, the other two peaks in the NO traces of NO + O<sub>2</sub>-TPD (Fig. 4a) show similar features among the three Fe-based perovskites, as does the desorption of N<sub>2</sub>O and N<sub>2</sub> at 100–300 °C (Figs. 4b and c). The thermal stability of nitrogen-containing adspecies over Cu/ZSM-5 was enhanced with an increasing oxidation state of nitrogen [19]. In addition, both mononitrosyl and dinitrosyl species were weakly adsorbed on the same catalyst compared to nitrate species [41]. Therefore, the former two NO desorptions likely correspond to mononitrosyl and dinitrosyl species, respectively.

## 4.3. C<sub>3</sub>H<sub>6</sub>-TPD

 $C_3H_6$  surface oxidation, which was enhanced by Cu substitution, was observed during  $C_3H_6$  desorption over Fe-based perovskites, likely realized via suprafacial oxidation by  $\alpha$ -O<sub>2</sub> bonded to anion vacancies. Based on our  $C_3H_6$ -TPD study, the following scheme may be proposed for the adsorption of  $C_3H_6$ over perovskites. Using the site described by the left hand side of Eq. (3), the olefine should adsorb on the electron-deficient part of the site, as described in Eq. (10). The  $-OC_3H_6$  radical (allylic adspecies) formed can now react with the surrounding  $\alpha$ -O<sub>2</sub> to form CO<sub>2</sub> and water, as described previously [42],

$$\begin{array}{c} CH_{3} CH_{2} \\ CH \\ CH \\ CH \\ CH \\ CH \\ CH \\ Fe^{n+} + 5 Fe^{n+} + C_{3}H_{6} \rightarrow Fe^{n+} + 5 Fe^{n+} \\ O^{-} \\$$

 $C_3H_6$  adsorbed on the surface of the Pd-substituted sample can be transformed not only into CO<sub>2</sub> via complete oxidation, but also into CO via partial oxidation according to the C<sub>3</sub>H<sub>6</sub>-TPD experiments (Figs. 5a–c). The CO formation by hydrocarbon oxidation over Cu/ZSM-5 was reported to occur especially at low temperatures and to be higher from alkenes than from alkanes [43]. Although less abundant  $\alpha$ -O<sub>2</sub> can be obtained over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> than over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> according to O<sub>2</sub>-TPD experiments shown in Fig. 3, a higher content of adsorbed carbonaceous species was observed (see Table 4), indicating that the C<sub>3</sub>H<sub>6</sub> transformation over Pd-substituted catalyst involves not only  $\alpha$ -O<sub>2</sub>, but also highly mobile lattice O<sup>2-</sup>, due to the excellent redox properties of this catalyst, as illustrated in Fig. 2,

$$\begin{array}{c} \text{CH}_{3} \text{ CH}_{2} \\ \text{CH} \\ \text{CH} \\ \text{O} \\ \text{H} \\ \text{Fe}^{n+} + 6\text{O}^{2-} \rightarrow 3\text{CO} + 3\text{H}_{2}\text{O} + \text{Fe}^{n+} . \end{array}$$
(11)

#### 4.4. TPSR of NO + $O_2$ under $C_3H_6/He$ flow

Fig. 6 clearly shows that the NO desorption features observed at T < 300 °C are similar to the two peaks assigned to mononitrosyl and dinitrosyl species in the TPD of NO + O<sub>2</sub> (Fig. 4a). Nevertheless, the NO desorption at high temperature (T > 300 °C) in Fig. 4a ascribed to nitrate species is no longer present in the traces of Fig. 6. This result implies that only the nitrate species among the adsorbed NO is highly active toward C<sub>3</sub>H<sub>6</sub> and is completely consumed by this reducing agent. A significant NO conversion was indeed found in the activity tests at temperatures above 350 °C (Fig. 7a). At such high temperatures, only the nitrate species is present on the perovskite surface, another indication of the high reactivity of the nitrate species in the C<sub>3</sub>H<sub>6</sub>-SCR process.

As seen in Fig. 6, molecular oxygen desorbs even in the presence of  $C_3H_6$  in the gas phase for temperatures below 260 °C, suggesting that the surface oxidation that consumes  $\alpha$ -oxygen is not completed below this temperature. The CO<sub>2</sub> formed by this reaction desorbs from the surface essentially above 260 °C, indicating that either CO<sub>2</sub> or an oxygenated carbonaceous species leading to its formation is adsorbed on the perovskite surface above 260 °C.

 $N_2$  was also detected during this experiment, again suggesting that reduction of the nitrate surface species by propene is associated with the SCR process.

## 4.5. Activity tests and reaction mechanism

Among the three Fe-based perovskite samples, the worst NO conversion to N<sub>2</sub> was achieved over unsubstituted LaFeO<sub>3</sub>, with a significant NO reduction starting at 350 °C (where nitrate is the only remaining species over perovskites, according to the NO + O<sub>2</sub>-TPD study) and a maximum of 62% at 700  $^{\circ}$ C (Fig. 7a). The high activity of nitrate species in reaction with propene was established via TPSR of NO +  $O_2$  in  $C_3H_6/He$ tests, indicating that the formation of nitrate species is the first important step in NO reduction. This is in agreement with our previous findings in C<sub>3</sub>H<sub>6</sub>-SCR of NO over Cu-MCM-41 [21],  $LaCo_{1-x}Cu_xO_3$  [32], and  $LaMn_{1-x}Cu_xO_3$  [33]. Furthermore, organo nitrogen compounds, identified as composed mainly of 1-nitropropane (C<sub>3</sub>H<sub>7</sub>–NO<sub>2</sub>) by GC-MS (typical composition: 92% C<sub>3</sub>H<sub>7</sub>NO<sub>2</sub>, 4% C<sub>2</sub>H<sub>5</sub>-N=CO isocyanate, 2% C<sub>2</sub>H<sub>5</sub>NO<sub>2</sub>, 1% CH<sub>3</sub>O-NO, 0.5% C<sub>3</sub>H<sub>7</sub>O-NO, and 0.5% HCN), were detected at 550-700 °C during NO reduction over lanthanum ferrite (Fig. 7b), strongly implying a mechanism with organo nitrogen compounds as intermediates. The formation of organo nitrogen compounds via reaction of adsorbed hydrocarbons with the surface nitrate was reported as the rate-determining step in the SCR of the NO process [44-46]. The rate of nitrate consumption was also proven to be close to that of N<sub>2</sub> formation over Ce/ZSM-5 [46] and Al<sub>2</sub>O<sub>3</sub> [47] according to FTIR kinetic studies. Hence the formation of 1-nitropropane should involve a reaction between the adsorbed species formed in reaction (10) and the nitrate species,

$$\begin{array}{cccccc}
CH_{3} CH_{2} & & \\
CH & & \\
CH & & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& & \\
& &$$

A significantly improved N<sub>2</sub> yield was achieved after Cu incorporation into the B site of Fe-based perovskite. Besides the essential distinct effect of copper ions in the transformation of nitrogen oxides [19], Cu substitution promoted the formation of nitrate species due to the enhancement of  $\alpha$ -oxygen, thereby further accelerating the generation of organo nitrogen compounds from nitrate and adsorbed propene, which is believed to be the rate-determining step in the SCR of NO by C<sub>3</sub>H<sub>6</sub>.

The reactivity of 1-nitropropane was investigated by Haj et al. [48]. This compound was found to be more rapidly decomposed in O<sub>2</sub> or NO + O<sub>2</sub> compared with C<sub>3</sub>H<sub>6</sub>, the final products being N<sub>2</sub>, CO<sub>2</sub>, and H<sub>2</sub>O. This finding supports the fact that such species are highly reactive in the presence of O<sub>2</sub>. Over Fe-based perovskites, the organo nitrogen compounds were detectable only in the gas phase at higher temperatures compared with N<sub>2</sub> formation. This seems to indicate a desorption rate of organo nitrogen compounds at 350–400 °C over LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> too low to allow detection. Based on a suggestion of Blower and Smith [49], further transformation of R–NO<sub>2</sub> into isocyanate (R–NCO) by a cyclic intermediate may be formulated as

$$\begin{array}{c} H \\ C_{2}H_{5}-C-N \\ H \end{array} \xrightarrow{O} C_{2}H_{5}-C-N^{+} \\ H \end{array} \xrightarrow{O} C_{2}H_{5}-C-N^{+} \\ O^{-} \\ H \end{array} \xrightarrow{O} C_{2}H_{5}-C-N^{+} \\ O^{-} \\ H \end{array} \xrightarrow{O} O^{-} \\ O^{-} \\ O^{-} \\ H \end{array} \xrightarrow{O} O^{-} \\ O^{-}$$

Finally,  $C_2H_5NCO$  was proposed to react with NO via the coupling of nitrogen atoms to yield the product of N<sub>2</sub> and CO<sub>2</sub> according to the assumption of Witzel et al [43]. At the same time, the participation of O<sub>2</sub> (especially  $\alpha$ -oxygen) can promote the oxidation of the ethyl group into CO<sub>2</sub> and H<sub>2</sub>O and accelerate the formation of N<sub>2</sub>,

$$O=C=N-C_{2}H_{5} + NO$$

$$\rightarrow O-N \qquad +\frac{13}{4}O_{2} \qquad N_{2} + 3CO_{2} + \frac{5}{2}H_{2}O. \qquad (14)$$

$$O=C-N-C_{2}H_{5}$$

As the temperature rises above  $450 \,^{\circ}$ C, more organo nitrogen compounds are generated. These compounds accumulate over the surface of the Cu-substituted sample and even desorb into the gas phase, because they cannot transform into isocyanate fast enough, leading to a decline in N<sub>2</sub> formation due to the decreasing coverage of surface active sites.

Among the three Fe-based perovskites tested, the best catalytic performance at low temperature was observed over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> (Figs. 7a–d), yielding the highest N<sub>2</sub> yield (approximately 67% at 350 °C) and the highest C<sub>3</sub>H<sub>6</sub> conversion at T < 400 °C. The C<sub>3</sub>H<sub>6</sub>-TPD study revealed that the highest content of adsorbed carbonaceous species can be achieved over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub>, followed not only by complete oxidation of  $C_3H_6$  into  $CO_2$  promoted by  $\alpha$ -O<sub>2</sub>, but also by partial oxidation of C<sub>3</sub>H<sub>6</sub> into CO. This partial oxidation was related to the highly reducible lattice oxygen associated with  $Pd^{2+}$ , with the result that more CO was yielded over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> during the SCR of NO (Fig. 7d). CO has been widely mentioned as an effective reducing agent to reduce NO at relatively low temperature with respect to C3H6 [1,3]. On the other hand, CO was reported to directly react with NO to form isocyanate (NCO) and final products [43,50]. This pathway avoids the formation of organo nitrogen compounds at relatively higher temperatures, resulting in outstanding activity at low temperatures. The abundant concentration of organo nitrogen compounds observed in the Pd-containing sample shown in Fig. 7b was ascribed to its higher ability in the formation of organo nitrogen compounds compared with LaFeO3 and its lower ability to decompose organo nitrogen compounds compared with LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> due to a lower surface density of  $\alpha$ -O<sub>2</sub>. Generally, the outstanding catalytic characteristics of Pdsubstituted perovskite for NO removal at low temperature were attributed mainly to its excellent redox properties (confirmed in the H<sub>2</sub>-TPR study shown in Fig. 2), which can initiate the

379

redox reaction with a small energy barrier, leading to a partial oxidation of  $C_3H_6$  into CO at low temperatures.

## 4.6. The role of $O_2$ in catalytic behavior of $LaFe_{0.8}Cu_{0.2}O_3$

Several points can be raised about the crucial role of O2 based on the proposed mechanism. As a promoter, O2 can oxidize NO into strongly adsorbed nitrate species and thus accelerate the formation of organo nitrogen compounds and isocyanate. As an inhibitor,  $O_2$  can lead to the consumption of the reducing agent by the complete oxidation of C<sub>3</sub>H<sub>6</sub>. Ueda and Haruta reported that NO reduction with C<sub>3</sub>H<sub>6</sub> barely occurs without oxygen over  $Au/Al_2O_3$  [51], whereas in the present work we obtained a satisfying NO reduction by C<sub>3</sub>H<sub>6</sub> in the absence of O2 over LaFe0.8Cu0.2O3 perovskite (see Fig. 8), achieving a higher N<sub>2</sub> yield at T < 400 °C and a quite lower C<sub>3</sub>H<sub>6</sub> conversion compared with those in the presence of 1% O<sub>2</sub>. The maximum yield of 30% in organo nitrogen compounds shifted down to 450 °C, and more CO was formed under this reducing atmosphere. A detailed study of the effect of  $O_2$  on catalytic performance of LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> at 400 °C is reported in Fig. 9, showing that NO conversion to N<sub>2</sub> passes through a maximum at 3000 ppm O<sub>2</sub>, then tends to decline at higher O<sub>2</sub> concentrations. Taking into account the tendency toward increasing yields of N2 and decreasing yields of organo nitrogen compounds at  $O_2$  concentrations <3000 ppm, the observed increase in N<sub>2</sub> yield at low O<sub>2</sub> concentration can be ascribed to an acceleration of the decomposition of organo nitrogen compounds. In contrast, N<sub>2</sub> yields will be severely inhibited at O<sub>2</sub> concentrations >5000 ppm, because the unselective combustion of the reducing agent with O<sub>2</sub> becomes faster than the NO-SCR over Fe-based perovskites and diminishes the number of reductant molecules remaining for the SCR reaction. Indeed, Fig. 9 shows significant  $C_3H_6$  consumption with increasing  $O_2$ concentration.

#### 5. Conclusion

In the current study, LaFeO<sub>3</sub> and the corresponding Cu- or Pd-substituted perovskites were synthesized by reactive grinding with nanoscale particle sizes <20 nm and high specific surface areas >30 m<sup>2</sup>/g even after calcination at 500 °C for 5 h. Cu substitution of 20% Fe<sup>3+</sup> in B sites leads to a positive charge deficiency that is compensated for by oxygen vacancies, resulting in significantly enhanced  $\alpha$ -O<sub>2</sub> adsorption. The formation of nitrate species, which is highly reactive toward C<sub>3</sub>H<sub>6</sub> according to TPSR tests, can be realized via oxidation of NO by  $\alpha$ -O<sub>2</sub>.

Incorporation of Pd into B sites significantly improves the mobility of lattice  $O_2$  and the reducibility of Fe-based perovskites.  $C_3H_6$  transformation over Pd-substituted samples involves not only complete oxidation into  $CO_2$  via  $\alpha$ - $O_2$ , but also partial oxidation into CO due to highly mobile lattice oxygen.

NO reduction by propene over Fe-based perovskites is controlled mainly by a mechanism involving organo nitrogen compounds, likely generated from the interaction between nitrate species and adsorbed C<sub>3</sub>H<sub>6</sub>. Subsequently, an isocyanate intermediate forms from organo nitrogen compounds and reacts with NO and/or O<sub>2</sub> to get the final products. With respect to LaFeO<sub>3</sub>, the better performance achieved over Cu-substituted perovskite can be ascribed to the enhanced formation of nitrate species. High SCR activity over LaFe<sub>0.97</sub>Pd<sub>0.03</sub>O<sub>3</sub> is observed at T < 350 °C, suggesting a possible pathway involving the generation of isocyanate (NCO) by direct NO–CO interaction at low temperatures. This CO formation by propene oxidation readily occurs over Pd-substituted perovskites due to its outstanding redox properties.

A study of the effect of gaseous  $O_2$  on the catalytic performance of LaFe<sub>0.8</sub>Cu<sub>0.2</sub>O<sub>3</sub> at 400 °C revealed that low  $O_2$  concentrations can accelerate the decomposition of organo nitrogen compounds, resulting in improved NO reduction and  $C_3H_6$  oxidation, whereas higher  $O_2$  partial pressure reduces the yield of  $N_2$  by depleting the reducing agent though complete  $C_3H_6$  oxidation.

#### Acknowledgments

Financial support from the NSERC through its industrial chair program is gratefully acknowledged. The authors also thank Nanox Inc. for preparing the perovskite samples.

#### References

- A.E. Giannakas, A.K. Ladavos, P.J. Pomonis, Appl. Catal. B 49 (2004) 147.
- [2] S.D. Peter, E. Garbowski, V. Perrichon, M. Primet, Catal. Lett. 70 (2000) 27.
- [3] A.K. Ladavos, P.J. Pomonis, Appl. Catal. A 165 (1997) 73.
- [4] J.C. Menezo, S. Inkari, T. Bertin, J. Barbier, N. Davias-Bainier, R. Noirot, T. Seguelong, Appl. Catal. B 15 (1998) L1.
- [5] J. Lentmaier, S. Kemmler-Sack, Mater. Res. Bull. 33 (3) (1998) 461.
- [6] M. Crespin, W.K. Hall, J. Catal. 69 (2) (1981) 359.
- [7] A.E. Giannakas, T.C. Vaimakis, A.K. Ladavos, P.N. Trikalitis, P.J. Pomonis, J. Colloid. Interface Sci. 259 (2003) 244.
- [8] R.J.H. Voorhoeve, D.W. Johnson Jr., J.P. Remeika, P.K. Gallagher, Science 195 (1977) 827.
- [9] J. Kirchnerova, D. Klvana, Int. J. Hydrogen Energy 19 (1994) 501.
- [10] X. Li, H.B. Zhang, X.X. Liu, S.J. Li, M.Y. Zhao, Mater. Chem. Phys. 38 (1994) 355.
- [11] C. Xiulan, L. Yuan, J. Chem. Eng. 78 (2001) 205.
- [12] G. Sinquin, C. Petit, J.P. Hindermann, A. Kiennemann, Catal. Today 70 (2001) 183.
- [13] S. Kaliaguine, A. van Neste, US patent 6017504 (2000).
- [14] S. Kaliaguine, A. van Neste, V. Szabo, J.E. Gallot, M. Bassir, R. Muzychuk, Appl. Catal. A 209 (2001) 345.
- [15] V. Szabo, M. Bassir, A. van Neste, S. Kaliaguine, Appl. Catal. B 43 (2003) 81.
- [16] M.L. Rojas, J.L.G. Fierro, L.G. Tejuca, A.T. Bell, J. Catal. 124 (1990) 41.
- [17] L. Lisi, G. Bagnasco, P. Ciambelli, S. De Rossi, P. Porta, G. Russo, M. Turco, J. Solid State Chem. 146 (1999) 176.
- [18] P. Porta, S. De Rossi, M. Faticanti, G. Minelli, I. Pettiti, L. Lisi, M. Turco, J. Solid State Chem. 146 (1999) 291.
- [19] G. Centi, S. Perathoner, Appl. Catal. A 132 (1995) 179.
- [20] M. Iwamoto, Catal. Today 29 (1996) 29.
- [21] Y. Wan, J.X. Ma, Z. Wang, W. Zhou, S. Kaliaguine, J. Catal. 227 (2004) 242.
- [22] N. Guilhaume, S.D. Peter, M. Primet, Appl. Catal. B 10 (1996) 325.
- [23] Y. Nishihata, J. Mizuki, T. Akao, H. Tanaka, M. Uenishi, M. Kimura, T. Okamoto, N. Hamada, Nature 418 (2002) 164.

- [24] K. Otsuka, R. Takahashi, I. Yamanaka, J. Catal. 185 (1) (1999) 182.
- [25] A.D. Cowan, N.W. Cant, B.S. Haynes, P.F. Nelson, J. Catal. 176 (2) (1998) 329.
- [26] T. Tanaka, T. Okuhara, M. Misono, Appl. Catal. B 4 (1994) L1.
- [27] A.A. Leontiou, A.K. Ladavos, G.S. Armatas, P.N. Trikalitis, P.J. Pomonis, Appl. Catal. A 263 (2004) 227.
- [28] S. Royer, A. van Neste, R. Davidson, S. McIntyre, S. Kaliaguine, Ind. Eng. Chem. Res. 43 (2004) 5670.
- [29] S. Varma, B.N. Wani, N.M. Gupta, Appl. Catal. A 241 (2003) 341.
- [30] P. Ciambelli, S. Cimino, L. Lisi, M. Faticanti, G. Minelli, I. Pettiti, P. Porta, Appl. Catal. B 33 (2001) 193.
- [31] P. Porta, S. Cimino, S. de Rossi, M. Faticanti, G. Minelli, I. Pettiti, Mater. Chem. Phys. 71 (2001) 165.
- [32] R.D. Zhang, A. Villanueva, H. Alamdari, S. Kaliaguine, Appl. Catal. B, in press.
- [33] R.D. Zhang, A. Villanueva, H. Alamdari, S. Kaliaguine, Appl. Catal. A, in press.
- [34] W.J. Shen, M. Okumura, Y. Matsumura, M. Haruta, Appl. Catal. A 213 (2001) 225.
- [35] S. Wisniewski, J. Belkouch, L. Monceaux, Chem. 3 (2000) 443.
- [36] M. Iwamoto, N. Mizuno, H. Yahiro, Stud. Surf. Sci. Catal. 75 (1992) 1285.

- [37] L.G. Tejuca, J.L.G. Fierro, J.M.D. Tascón, Adv. Catal. 36 (1989) 237.
- [38] T. Seiyama, N. Yamazoe, K. Eguchi, Ind. Eng. Chem., Prod. Res. Dev. 24 (1985) 19.
- [39] L.A. Isupova, A.A. Budneva, E.A. Paukshtis, V.A. Sadykov, J. Mol. Catal. A 158 (2000) 275.
- [40] B. Coq, D. Tachon, F. Figuéras, G. Mabilon, M. Prigent, Appl. Catal. B 6 (1995) 271.
- [41] J. Valyon, W.K. Hall, J. Phys. Chem. 97 (1993) 1204.
- [42] Y. Wan, J.X. Ma, W. Zhou, S. Kaliaguine, Appl. Catal. B 59 (2005) 235.
- [43] F. Witzel, G.A. Sill, W.K. Hall, Stud. Surf. Sci. Catal. 84 (1994) 1531.
- [44] R.H.H. Smits, Y. Iwasawa, Appl. Catal. B 6 (3) (1995) 201.
- [45] M. Haneda, Y. Kintaichi, M. Inaba, H. Hamada, Catal. Today 42 (1998) 127.
- [46] C. Yokoyama, M. Misono, J. Catal. 150 (1) (1994) 9.
- [47] K.I. Shimizu, H. Kawabata, A. Satsuma, T. Hattori, J. Phys. Chem. B 103 (1999) 5240.
- [48] K.O. Haj, S. Ziyade, M. Ziyad, F. Garin, Appl. Catal. B 37 (2002) 49.
- [49] C.J. Blower, T.D. Smith, Zeolite 13 (1996) 394.
- [50] J.W. London, A.T. Bell, J. Catal. 31 (1973) 96.
- [51] A. Ueda, M. Haruta, Appl. Catal. B 18 (1-2) (1998) 115.